The intensity data were collected at variable scan rates from 4 to $29.3^{\circ} \mathrm{min}^{-1}$ depending on intensity. Stationary backgrounds were measured on both sides of a peak, each for one-half of the scan time. The structure was solved by direct methods and difference Fourier techniques, and refined by blocked-cascade least-squares refinement (Sparks, 1961). Non-H atoms were refined with anisotropic and H atoms with isotropic displacement parameters. Calculations were performed on the Data General micro-eclipse computer. Software used for structure solution, refinement and molecular graphics: SHELXTL (Sheldrick, 1985).

Financial support of the National Institutes of Health Minority Biomedical Research Support Program (Grant RR09049-17) at North Carolina Central University, and of the National Science Foundation (Grant CHE8307022) for upgrading the X-ray diffractometer at North Carolina State University, is gratefully acknowledged.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: SZ1002). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH 12 HU , England.

References

Izydore, R. A., Bernal-Ramirez, J. A., Singh, P. (1990). J. Org. Chem. 55, 3761-3767.
Le Page, Y. (1982). J. Appl. Cryst. 15, 255-259.
Sheldrick, G. M. (1985). SHELXTL. Revision 5.1. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.
Simlot, R., Izydore, R. A., Wong, O. T. \& Hall. I. H. (1994). J. Pharm. Sci. 83, 367-371.
Sparks, R. A. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis, edited by R. A. Pepinsky, J. M. Robertson \& J. C. Speakman, pp. 170-187. Pergamon Press: New York.
Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

Acta Cryst. (1996). C52, 1820-1823

N-Acetyl-L-phenylalanyl-L-alaninamide

Raffaella Puliti, ${ }^{a}$ Cira De Sena ${ }^{a}$ and Carlo Andrea Mattia ${ }^{b}$
${ }^{a}$ Istituto per la Chimica di Molecole di Interesse Biologico CNR, Via Toiano 6, 80072 Arco-Felice, Napoli, Italy, and
${ }^{b}$ Dipartimento di Chimica dell'Università 'Federico II' di Napoli and Centro di Studio di Biocristallografia CNR, Via Mezzocannone 4, 80134 Napoli, Italy

(Received 3 January 1996; accepted 28 February 1996)

Abstract
The conformation of the peptide chain in N -acetyl-L-phenylalanyl-L-alaninamide (NAFAA), $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$, is

rather extended and falls in the E region of the φ, ψ map, according to the classification of Zimmerman, Pottle, Némethy \& Scheraga [Macromolecules (1977), 10, 1-9]. The values of φ, ψ torsion angles are like those of an antiparallel β pleated sheet. Sidechain conformation of Phe residue is defined by $\chi_{1}=$ $-174.5(4)^{\circ}$ and $\chi_{2}=105.5(6)^{\circ}$ and comes within the B_{2} class of the observed statistical distribution for the aromatic residues in peptides [Cody, Duax \& Hauptman, (1973). Int. J. Peptide Protein Res. 5, 297-308]. Crystal packing is ruled by four intermolecular hydrogen bonds that involve all the donor groups, the acetyl O atom acting as a double acceptor. In the crystal there are ribbons of molecules translated along the a axis of the $P 2_{1}$ space group and joined through three hydrogen bonds. The fourth hydrogen bond interconnects screwrelated ribbons. The phenylalanyl rings stack parallel to the a direction with interplanar distances of 3.334 (7) \AA.

Comment

X-ray studies on protected aminoacids and oligopeptides are useful for a better understanding of the conformational preferences of amino acid residues in biopolymers. The results obtained from small structures can also be used in the interpretation of refinement data of protein structures. As part of a program concerning crystallographic determinations and thermodynamic behaviour during the phase transitions of N-acetyl peptidoamides (Puliti, Barone, Giancola \& Mattia, 1996; Puliti \& Mattia, 1995, and references therein), we present here the X-ray structure of N-acetyl-L-phenylalanyl-L-alaninamide (NAFAA), (I).

(I)

A perspective view of the NAFAA molecule is shown in Fig. 1 together with the atomic labels used. The most significant values of the intramolecular geometry are reported in Table 2. Bond lengths and bond angles are generally in good agreement with the corresponding values reported in the literature for similar compounds (Ramachandran, Kolaskar, Ramakrishnan \& Sasisekharan, 1974) and in particular for other N-acetylpeptidoamides (Puliti \& Mattia, 1995, and references therein).
The molecule adopts a rather extended conformation. The peptide linkage is in a slightly distorted trans form $\left[\omega=173.1(4)^{\circ}\right]$ and φ, ψ torsion angles for the two residues fall in the E region of the conventional Zimmerman map for peptides (Zimmerman, Pottle,

Fig. 1. Perspective view of the NAFAA molecule with the atomic labelling scheme. Displacement ellipsoids are plotted at the 30% probability level.

Némethy \& Scheraga, 1977). Both φ, ψ pairs occur in the region of β chain conformations and are near the typical values for antiparallel β pleated sheets, $\varphi=$ $-140^{\circ}, \psi=135^{\circ}$ (Arnott, Dover \& Elliott, 1967). The overall NAFAA conformation is not far from that of N -acetyl-L-alanyl-L-alaninamide (Puliti \& Mattia, 1995).

The conformation of the Phe residue corresponds to the second of the three basic energy-minimum conformers defined by the three possible staggered values of χ_{1} $=60,180$ and -60°, respectively (Vàsquez, Némethy \& Scheraga, 1983). The present trans conformation falls within the B_{2} class, according to the statistical distribution of the observed conformations of aromatic residues (Cody, Duax \& Hauptman, 1973). In the NAFAA molecule, the higher value of χ_{2} compared with the minimum values from the energy calculations ($105.5 \mathrm{in}-$ stead of 78°) on the simple phenylalanine derivatives (Vàsquez et al., 1983) is possible because of the lower observed value of $\psi\left(129.5\right.$ instead of 151°). This is a clear proof of the ψ, χ_{2} interdependence (Benedetti, Morelli, Némethy \& Scheraga, 1983). In NAFAA, the shortest interactions between the ring and the backbone atoms are: $\mathrm{C} 13 \cdots \mathrm{C} 2=3.166(7), \mathrm{C} 13 \cdots \mathrm{~N} 2=$ 3.361 (7) Å.

Crystal packing is shown in Fig. 2. All of the $\mathrm{H}(\mathrm{N})$ atoms are involved in intermolecular hydrogen bonds, whose geometry is given in Table 3. Molecules translated along the a direction are linked into ribbons by means of three independent hydrogen bonds [$\mathrm{N} 1-\mathrm{HN} 1 \cdots \mathrm{O} 3, \mathrm{~N} 2-\mathrm{HN} 2 \cdots \mathrm{Ol}$ and $\mathrm{N} 3-$ HN3 \cdots O2]. The fourth hydrogen bond N3— $\mathrm{H}^{\prime} \mathrm{N} 3 \cdots \mathrm{O} 3$
interconnects the screw-related ribbons. The phenylalanyl rings stack parallel to the a direction (Fig. 3) with interplanar distances of 3.334 (7) Å. The methyl groups of both alanine and acetoxy residues protrude from the molecular ribbons to face each other at alternate distances of 3.697 (8) and 4.036 (9) \AA.

Fig. 2. Crystal packing projected on the $a b$ plane. For clarity, only O and N atoms are labelled. Dashed lines indicate hydrogen bonds, the equivalent positions of acceptors are reported in Table 3.

Fig. 3. View of the molecular arrangement showing the phenylalanyl stacking.

Experimental

The synthesis of N-acetyl-L-phenylalanyl-L-alaninamide (NAFAA) has been described previously (Milburn, 1984; Lilley, 1988).

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{1} \mathrm{~N}_{3} \mathrm{O}_{3}$
$M_{r}=277.33$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54056 \AA$

Monoclinic
$P 2_{1}$
$a=4.809$ (3) \AA
$b=17.846(4) \AA$
$c=8.825(5) \AA$
$\beta=93.68(3)^{\circ}$
$V=756(1) \AA^{3}$
$Z=2$
$D_{x}=1.218 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-\theta$ scans
Absorption correction:
none
1580 measured reflections
1580 independent reflections
1105 observed reflections
$[I>2.5 \sigma(I)]$

Refinement

Refinement on F
$R=0.047$
$w R=0.045$
$S=0.93$
1105 reflections
181 parameters
H -atom parameters not refined
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+\left(0.01 F_{o}\right)^{2}\right.$ $+0.1]$ (Killean \& Lawrence, 1969)

Cell parameters from 25 reflections
$\theta=20-25^{\circ}$
$\mu=0.680 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Colourless
$0.55 \times 0.18 \times 0.08 \mathrm{~mm}$ Flattened prism
$\theta_{\max }=75^{\circ}$
$h=0 \rightarrow 6$
$k=0 \rightarrow 22$
$l=-11 \rightarrow 11$
3 standard reflections frequency: 240 min intensity decay: 3%
$\Delta \rho_{\text {max }}=0.14 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}$
Extinction correction: Stout \& Jensen (1968)
Extinction coefficient: $7.5(4) \times 10^{-6}$
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	こ	$B_{\text {eq }}$
Ol	0.6102 (5)	0.0	0.1684 (4)	5.52 (8)
02	-0.1097 (6)	-0.1778(2)	0.0068 (5)	7.04 (9)
O3	-0.0899 (5)	0.1815 (2)	0.2860 (4)	4.22 (6)
N1	0.3294 (6)	0.1324 (2)	0.2438 (4)	3.81 (7)
N2	0.1825 (6)	-0.0519 (2)	0.1438 (4)	3.67 (7)
N3	0.3112 (7)	-0.2082 (2)	-0.0655 (5)	5.6 (1)
Cl	0.2281 (8)	0.0828 (2)	0.1217 (5)	3.61 (8)
C2	0.3539 (8)	0.0066 (3)	0.1492 (5)	3.79 (9)
C3	0.2817 (9)	-0.1285 (2)	0.1519 (6)	4.3 (1)
C4	0.1466 (8)	-0.1728 (3)	0.0231 (5)	4.2 (1)
C5	0.1657 (8)	0.1791 (2)	0.3144 (5)	3.53 (8)
C6	0.304 (1)	0.2301 (3)	0.4296 (6)	5.8 (1)
C7	0.3053 (9)	0.1151 (3)	-0.0301 (6)	4.9 (1)
C8	0.190 (1)	0.0731 (3)	-0.1694 (6)	5.6 (1)
C9	-0.031 (1)	0.1029 (4)	-0.2582 (7)	6.8 (2)
C10	-0.130 (2)	0.0641 (5)	-0.3891 (7)	8.9 (2)
C11	-0.018 (2)	-0.0014 (5)	-0.4279 (7)	9.9 (2)
C 12	0.194 (2)	-0.0321 (5)	-0.3398 (7)	9.5 (2)
C13	0.296 (1)	0.0045 (4)	-0.2103 (6)	7.1 (2)
C14	0.221 (1)	-0.1643 (4)	0.3023 (7)	7.8 (2)

Table 2. Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 2$	$1.239(4)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.498(6)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.235(5)$	$\mathrm{C} 3-\mathrm{C} 14$	$1.518(8)$
$\mathrm{O} 3-\mathrm{C} 5$	$1.239(4)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.490(7)$

$\mathrm{N} 1-\mathrm{Cl}$	1.454 (5)	C7-C8	1.515 (7)
$\mathrm{NI}-\mathrm{C} 5$	1.328 (5)	C8-C9	1.383 (8)
N2-C2	1.329 (5)	C8-C13	1.383 (9)
N2-C3	1.448 (6)	C9-C10	1.405 (9)
N3-C4	1.311 (6)	C10-- 11	1.341 (9)
$\mathrm{C} 1-\mathrm{C} 2$	1.502 (6)	$\mathrm{C} 11-\mathrm{Cl} 2$	1.355 (9)
$\mathrm{Cl}-\mathrm{C} 7$	1.527 (7)	C12-C13	1.379 (9)
$\mathrm{Cl}-\mathrm{N} 1-\mathrm{C} 5$	12.3 .3 (3)	N3-C4-C3	117.3 (4)
C2-N2-C3	122.5 (3)	$\mathrm{O} 3-\mathrm{C} 5-\mathrm{Nl}$	122.5 (4)
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	108.7 (3)	O3-C5-C6	120.6 (4)
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 7$	109.3 (3)	N1-C5-C6	116.8 (3)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 7$	111.4 (4)	$\mathrm{Cl}-\mathrm{C} 7-\mathrm{C} 8$	115.3 (4)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 2$	122.7 (4)	C7-C8-C9	119.8 (5)
$\mathrm{Ol}-\mathrm{C} 2-\mathrm{Cl}$	119.7 (3)	C7-C8-C13	121.8 (5)
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{Cl}$	117.6 (3)	C9-C8-C13	118.4 (5)
N2-C3-C4	109.6 (4)	C8-C9-C10	118.9 (6)
N2-C3-C14	111.0 (4)	$\mathrm{C} 9-\mathrm{ClO}-\mathrm{Cl1}$	121.2 (6)
C4-C3-C14	110.1 (4)	$\mathrm{Cl} 0-\mathrm{Cl1}-\mathrm{Cl2}$	120.3 (7)
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{N} 3$	122.2 (4)	$\mathrm{Cl1}-\mathrm{Cl2-C13}$	119.9 (7)
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	120.5 (4)	$\mathrm{C} 8-\mathrm{C13}-\mathrm{Cl} 2$	121.2 (6)
$\mathrm{C} 5-\mathrm{NI}-\mathrm{Cl}-\mathrm{C} 2$		$\varphi_{1} \quad-135.1(4)$	
$\mathrm{C} 5-\mathrm{NI}-\mathrm{Cl}-\mathrm{C} 7$			
$\mathrm{Cl}-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$		$\omega^{\prime} \quad-17$.	
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{Cl}$		$\omega \quad 173$.	
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$		$\varphi_{2} \quad-128$.	
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3-\mathrm{Cl} 4$			
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2-\mathrm{N} 2$		$\psi_{1} \quad 12$	
$\mathrm{Ni}-\mathrm{Cl}-\mathrm{C7}-\mathrm{C} 8$		$\chi_{1}-17$	
C2-Cl-C7-C8			
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 3$		$\psi_{2} \quad 12$	
$\mathrm{Cl}-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$		$\chi 2.110$	
$\mathrm{Cl}-\mathrm{C} 7-\mathrm{C} 8-\mathrm{Cl} 3$		$\chi 2,1$-7	

Table 3. Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$

D-H. . A	D. . A	H...A	D-H. . A
NI-HNI . . $\mathrm{OS}^{\text {+ }}$	2.928 (4)	2.05	150
$\mathrm{N} 2-\mathrm{HN} 2 \cdots \mathrm{Ol}^{11}$	2.925 (4)	1.99	161
$\mathrm{N} 3-\mathrm{HN} 3 \cdots \mathrm{O}^{\prime}$	2.869 (4)	1.91	169
$\mathrm{N} 3-\mathrm{H}^{\prime} \mathrm{N} 3 \cdots \mathrm{O} 3^{\prime \prime \prime}$	2.919 (5)	1.96	169

Symmetry codes: (i) $1+x, y, z:$ (ii) $x-1, y, z:$ (iii) $-x, y-\frac{1}{2},-z$.
The equipment of the 'Centro di Biocristallografia' CNRNapoli was used for the data collection. The structure was solved using the SIR92 package (Altomare et al., 1993). All calculations were performed using SDP software (EnrafNonius, 1985) on a MicroVAX3100 computer.

The authors wish to thank Professor T. H. Lilley for the NAFAA samples.

> Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1224). Copies may be obtained through The Managing Editor, International Union of Crystallography. 5 Abbey Square. Chester CH1 2HU. England.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi. A. (1993). J. Appl. Cnst. 26, 343-350.

Arnott, A., Dover, D. \& Elliott, A. (1967). J. Mol. Biol. 30, 201-208.
Benedetti, E., Morelli, G., Némethy, G. \& Scheraga, H. A. (1983). Int. J. Peptide Protein Res. 22, 1-15.
Cody, V., Duax, W. L. \& Hauptman, H. (1973). Int. J. Peptide Protein Res. 5, 297-308.
Enraf-Nonius (1985). Structure Determination Package. EnrafNonius, Delft, The Netherlands.

Killean, R. C. G. \& Lawrence, J. L. (1969). Acta Cryst. B25, 17501752.

Lilley, T. H. (1988). Biochemical Thermodynamics, edited by M. N. Jones, pp. 1-52. Amsterdam: Elsevier.
Milburn, P. J. (1984). PhD thesis, University of Sheffield, England. Puliti, R., Barone, G., Giancola, C. \& Mattia, C. A. (1996). J. Mol. Struct. In the press.
Puliti, R. \& Mattia, C. A. (1995). Acta Cryst. C51, 336-339.
Ramachandran, G. N., Kolaskar, A. S., Ramakrishnan, C. \& Sasisekharan, V. (1974). Biochim. Biophys. Acta, 359, 298-302.
Stout, G. H. \& Jensen, L. H. (1968). X-ray Structure Determination, pp. 409-412. New York: Macmillan.
Vàsquez, M., Némethy, G. \& Scheraga, H. A. (1983). Macromolecules, 16, 1043-1049.
Zimmerman, S. S.. Pottle, M. S., Némethy, G. \& Scheraga, H. A. (1977). Macromolecules, 10, 1-9.

Acta Cryst. (1996). C52, 1823-1825

$\mathbf{2}^{\prime}$-Deoxycytidine-N3-cyanoborane

Qi Gao, ${ }^{a}$ Anup Sood, ${ }^{b}$ Barbara Ramsay Shaw ${ }^{b}$ and Loren D. Williams ${ }^{\text {c }}$
${ }^{a}$ Analytical Research and Development, Pharmaceutical Research Institute, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, CT 06492-7660, USA,
${ }^{\text {b Paul Gross Laboratory, Department of Chemistry, Duke }}$ University, Durham, NC 27706, USA, and 'School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA

(Received 16 May 1995; accepted 6 October 1995)

Abstract

The structure of the $P 22_{1} 2_{1}$ form of 2^{\prime}-deoxycytidine$N 3$-cyanoborane, $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{BN}_{4} \mathrm{O}_{4}$, has been determined. The sugar is in the ${ }^{2} E$ puckering mode and the $\mathrm{C}^{\prime}-\mathrm{O} 5^{\prime}$ bond has a $t g$ conformation while the relative orientation of the sugar and the base remains anti.

\section*{Comment}

The bond lengths and angles of the title molecule, (I), in the $P 2_{1} 2_{1} 2_{1}$ form described here are similar to those in the $P 2_{1}$ form (Singh, Zottola, Ramsay Shaw \& Pedersen, 1996). In the $P 2_{1} 2_{1} 2_{1}$ form, the B atom is tetrahedral with bond angles ranging from 107.5 (2) to $110.1(2)^{\circ}$. The $\mathrm{B}-\mathrm{C} \equiv \mathrm{N}$ moiety has a bent geometry as indicated by the angle $176.0(3)^{\circ}$. Consistent with the $P 2_{1}$ form, the exocyclic bond angle $\mathrm{C} 4-\mathrm{N} 3-\mathrm{B}, 124.3(2)^{\circ}$, is larger than $\mathrm{C} 2-\mathrm{N} 3-\mathrm{B}, 115.5(2)^{\circ}$. One of the $\mathrm{BH}_{2} \mathrm{H}$ atoms is in close van der Waals contact with one of the $\mathrm{NH}_{2} \mathrm{H}$ atoms ($1.944 \AA$).

The cytosine ring is planar with the following deviations from the best least-squares plane, N1 -0.015 (2), C2 0.021 (2), N3-0.009(2), C4-0.008(2), C5 0.015 (3), C6 -0.003 (2) A. The non-H substituents deviate significantly from the plane with Cl^{\prime} out-of-plane by $-0.155(2), \mathrm{O} 2$ by $0.029(2)$, 331 by -0.102 (3) and N4 by -0.034 (2) \AA. The torsion angles for the cytosine ring, ranging from 0.4 (3) to $3.7(3)^{\circ}$, are in good agreement with the typical value obtained by Taylor \& Kennard (1982) for a pyrimidine ring.

Unlike the $P 2_{1}$ form, the furanose ring in the $P 2_{1} 2_{1} 2_{1}$ form is in an envelope conformation with $\mathrm{C} 2^{\prime}$ deviating 0.523 (3) \AA from the plane containing the other four atoms and the ${ }^{2} E$ puckering mode is assumed. The angle of pseudorotation P is -13.2° and $v_{\max }$ is 18.8° (Saenger, 1984). In addition, the torsion angles $\mathrm{C} 3^{\prime}-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}-\mathrm{O}^{\prime} 66.4(3)^{\circ}$ and $\mathrm{O}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}-$ O5' $-176.0(2)^{\circ}$, demonstrate that the conformation around the exocyclic bond, $\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}$, is $t g$.

However, the torsion angle $\mathrm{O}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{N} 1-\mathrm{C} 6$ $-14.6(3)^{\circ}$, shows that the glycosyl conformation remains anti.

In the crystal, as shown in Fig. 2 and Table 2, molecules are linked through hydrogen bonds between bases, $\mathrm{C} 5-\mathrm{H} \cdots \mathrm{O} 2$ and $\mathrm{N} 4-\mathrm{H} \cdots \mathrm{O} 2$, to form infinite long chains along the b axis. These long chains are crosslinked by hydrogen bonds from sugar to sugar and from sugar to base, $\mathrm{O}^{\prime}-\mathrm{H} \cdots \mathrm{O}^{\prime}$ and $\mathrm{O}^{\prime}-\mathrm{H} \cdots \mathrm{N} 31$, resulting in total in a three-dimensional hydrogen-bond network.

Fig. 1. Molecular structure of the title compound with displacement ellipsoids plotted at the 50% probability level.

